4 research outputs found

    Rapid synthesis of supported single metal nanoparticles and effective removal of stabilizing ligands

    Get PDF
    A method is introduced to rapidly (<30 min) synthesize single metal nanoparticles with narrow size distribution in a simple way. It is based on the electrospraying of a metal precursor solution into a surfactant solution, which acts as a reducing and stabilizing agent. This synthesis method is demonstrated for the production of Ag and Au nanoparticles, which are incorporated onto carbonaceous and non-carbonaceous supports. The nanoparticle size depends on the internal diameter of the spraying nozzle. The removal of the stabilizing surfactant (dodecylamine; DDA) is also examined via thermal annealing and oxygen plasma treatments. Thermal annealing at a low temperature rate is found to be the most effective, as it completely removes DDA from the metal nanoparticles without inducing changes in their particle size. To verify that the supported Ag nanoparticles post calcination are surfactant-free and, thus, their surface sites are active, their oxygen reduction reaction (ORR) activity is measured in alkaline media, demonstrating similar values to the ones reported in the literature

    Engineering Catalyst Layers for Next-Generation Polymer Electrolyte Fuel Cells: A Review of Design, Materials, and Methods

    Get PDF
    Polymer electrolyte fuel cells (PEFCs) are a promising replacement for the fossil fuel–dependent automotive and energy sectors. They have become increasingly commercialized in the last decade; however, significant limitations on durability and performance limit their commercial uptake. Catalyst layer (CL) design is commonly reported to impact device power density and durability; although, a consensus is rarely reached due to differences in testing conditions, experimental design, and types of data reported. This is further exacerbated by aspects of CL design such as catalyst support, proton conduction, catalyst, fabrication, and morphology, being significantly interdependent; hence, a wider appreciation is required in order to optimize performance, improve durability, and reduce costs. Here, the cutting-edge research within the field of PEFCs is reviewed, investigating the effect of different manufacturing techniques, electrolyte distribution, support materials, surface chemistries, and total porosity on power density and durability. These are critically appraised from an applied perspective to inform the most relevant and promising pathways to make and test commercially viable cells. This holistic view of the competing aspects of CL design and preparation will facilitate the development of optimized CLs, especially the incorporation of novel catalyst support materials
    corecore